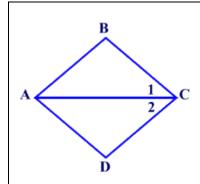

 The angles of a triangle are in the ratio 1:3:5. What is the measure, in degrees, of the largest angle? 	2. Which construction represents the center of a circle that is inscribed in a triangle?
angle? A. 20° B. 30° C. 60° D. 100° 3. \(\text{\subseteq} ABC \) and \(\text{\subseteq} XYZ \) are congruent isosceles triangles. What is the measure of angle \(A? \) A. 8° B. 54° C. 72° D. 180° D. 180°	 A. The intersection of the three altitudes of the triangle. B. The intersection of the three medians of the triangle. C. The intersection of the angle bisectors of each angle of the triangle. D. The intersection of the perpendicular bisectors of each side of the triangle. 4. Three vertices of a square have coordinates (3,1), (4, -4) and (-1, -5). The diagonals of the square intersect at point Q. Determine the coordinates of point Q. You may use the blank grid to help determine the solution.
 5. Martina has a calculator box that has a volume of 29 cubic inches. 1 inch = 2.54 centimeters Determine the volume of the calculator box to the nearest cubic centimeter. 	6. Determine the converse of the given statement. If the table top is rectangular, then its diagonals are congruent. Which is the converse of this statement? A. If a table top is rectangular, then its diagonals are not congruent B. If the diagonals of a table top are congruent, then it is rectangular. C. If a table top is not rectangular, then its diagonals are not congruent. D. If the diagonals of a table top are not congruent, then it is not rectangular.

- 13. What is tan K?
- O A. $\frac{8}{17}$
- O B. $\frac{15}{17}$
- O c. $\frac{8}{15}$
- O D. $\frac{15}{8}$

14. Given: $<1 \cong <2, <3 \cong <4$ Which statement MAY NOT be true?

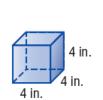

- O A. line I || line m
- O B <1≅<3
- C. the opposite angles of the quadrilateral formed are two pairs of congruent angles
- O D. quadrilateral formed must be a rectangle

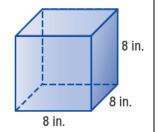
15. What is the missing reason?

Given: $\overline{BC} \cong \overline{CD}$

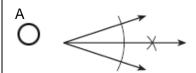
 \overline{AC} bisects $\angle BCD$

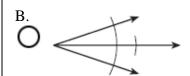
Prove: $\triangle ABC \cong \triangle ADC$

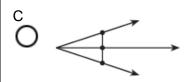


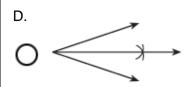

$\overline{BC} \cong \overline{CD}$	1. Given	О А.	CPCTC
∠1 ≅ ∠2	2. #15	Ов.	Definition of congruent
$\overline{AC} \cong \overline{AC}$	3. Reflexive Property (a quantity is congruent to itself)	Ос.	For two congruent segments, their adjacent angles are congruent.
$\Delta ABC \cong \Delta ADC$	4. (SAS) If two sides and the included angle of one triangle are congruent to the corresponding parts of a second triangle, the triangles are congruent.	О д.	An angle bisector is a ray whose endpoint is the vertex of the angle and divides the angle into two congruent angles.

16. PQRS is a parallelogram. Find x.

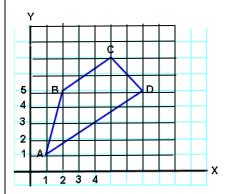

0	A.	X=3	S
0	В	X=7	15 34
0	C.	X=9	1 2x 3 2x x 3
0	D.	X=15	R ✓

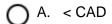

17. What happens to the surface area of a cube if the edges are doubled?

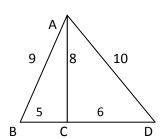




18. Which diagram below shows a correct mathematical construction using only a compass and a straightedge to bisect an angle?

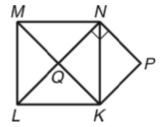






19. (2 pt response)
Given: A(1,1), B(2, 5), C(5, 7), D(7, 5)
Prove ABCD is a trapezoid.

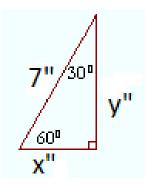
20. Which angle has a cosine of $\frac{3}{5}$?

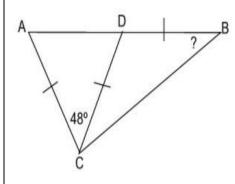

21.

KLMN is a square and $LN \perp NP$. Which can be proved?

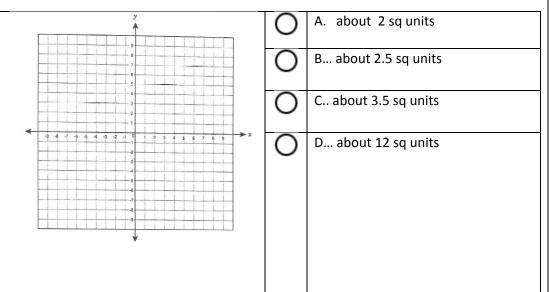
$$\bigcap$$
 A \triangle KPN \cong \triangle KQN

$$\bigcap$$
 B $\overline{PN}||\overline{KM}|$


O D. KP =
$$\frac{1}{2}$$
LN

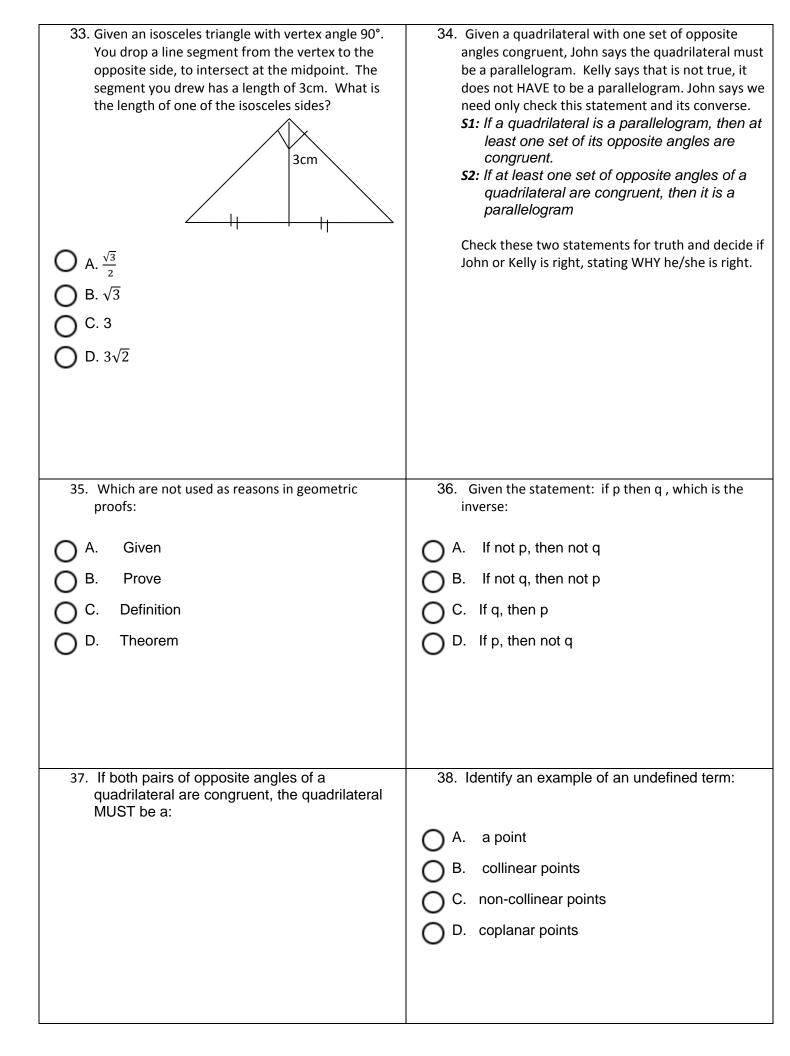


O C. \overline{AD} and \overline{BC} O D. \overline{AC} and \overline{BD} O D. \overline{AC} and \overline{BD} O D. \overline{AC} and \overline{BD} Questions # 24 & #25 below Given $\overline{AC} \cong \overline{EF}$; $\overline{AC} \mid \overline{DB}$; $\overline{EF} \mid \overline{DB}$ Prove: $\overline{AC} \cong \overline{EF}$ and \overline{EF} and
Questions # 24 & #25 below Given $\overline{AC} \cong \overline{EF}$; $\overline{AC} \mid \overline{DB}$; $\overline{EF} \mid \overline{DB}$ Prove: $\langle B \cong \langle D \rangle$ 1) GIVEN
Questions # 24 & #25 below Given $\overline{AC} \cong \overline{EF}$; $\overline{AC} \mid \overline{DB}$; $\overline{EF} \mid \overline{DB}$ Prove: $\langle B \cong \langle D \rangle$ 1) GIVEN
Given $\overline{AC} \cong \overline{EF}$; $\overline{AC} \mid \overline{DB}$; $\overline{EF} \mid \overline{DB}$ Prove: $\langle B \cong \langle D \rangle$ 1) GIVEN
Given $\overline{AC} \cong \overline{EF}$; $\overline{AC} \mid \overline{DB}$; $\overline{EF} \mid \overline{DB}$ Prove: $\langle B \cong \langle D \rangle$ 1) GIVEN
Prove: $\langle B \cong \langle D \rangle$ D C D GIVEN
D C E
1) GIVEN
1) GIVEN
· ·
$\overline{AC} \perp \overline{DB}; \ \overline{EF} \perp \overline{DB}$
$\overline{AC} \cong \overline{EF}$; $\angle A \cong \angle E$
2) Perpendicular lines meet to form right angles
3) ASA
$ \Delta ABC \cong \Delta EDF $ 4) $\angle B \cong \angle D$ 4) #25
#24 Which is the missing statement? #25 Which is the missing reason? A. $< B \cong < D$ A. Vertices are \cong
O B. <1 ≅< 2 O B. CPCTC
C. <a &="" <="" angles="" are="" c.="" congruent<="" definition="" e="" of="" right="" td="">
D. < 1 & < 2 are Right Angles D. Perpendicular lines make
triangles congruent
26. A parallelogram must be a rectangle if its 27. In quadrilateral ABCD, DE = BF.
diagonals : Then $\triangle EGC \cong \triangle FGA$ by:
A. bisect each other
B. bisect the angles to which they are drawn
C. are perpendicular to each other.
D. are congruent


- 28. Given the triangle below, what is the length of x? (round to nearest 0.1")
- 29. (2 pt) In the diagram below $\overline{AC} \cong \overline{DC} \cong \overline{DB}$.

If the m < ACD = 48, find the m < B.

30. Given a line with y-intercept(0,4) and x-intercept (3,0), find the area of the square with one corner on the origin and the opposite corner on the line described above.


31. Two joggers run 8 miles north and then 5 miles west. What is the shortest distance, to the *nearest tenth of a mile*, they must travel to return to their starting point?

32. (2pt response)

"If a measurement made with a metric ruler is 5.6 cm and the ruler has a precision of 0.1 cm, then the measurement is 5.6 \pm 0.05 cm, or from 5.55 cm to 5.65 cm. Any measurements within this range are 'tolerated' or perceived as correct."

Explain why you might use this degree of precision in measuring, and what is meant by the ruler having "a precision of 0.1cm".

39. All of the following are correct names for the line drawn b	pelow except:
O A. /	
O B. line \overrightarrow{AB}	
O C. line BA B	
O D. line \vec{A}	
40. Identify the error(s) in reasoning in the following proof.	You may draw the picture if you wish
	,
$\langle ARC \simeq \rangle$	Ginon

O _A .	$\langle ABC \cong \langle PRQ , \overline{AB} \cong \overline{PQ}; \overline{BC} \cong \overline{QR}$	Given
Ов.	$\overline{AB} \& \overline{CB}$ form < ABC $\overline{RQ} \& \overline{PR}$ form < PRQ	by Def of Angle
Ос	△ABC has vertices A, B & C △ PQR has vertices P, Q & R	Def of Triangle
O _{D.}	△ABC ≅ △PQR	by SAS

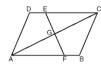
/ 11 12	SWER KEY		
1.	D G.3.A (MC, SA) Know, explain, and apply basic postulates and theorems about triangles and the special lines, line segments, and rays associated with a triangle.		C G.3.I (MC) Explain and perform constructions related to the circle.
3.	B G.3.A (MC, SA) Know, explain, and apply basic postulates and theorems about triangles and the special lines, line segments, and rays associated with a triangle		(1, -2) G.4.B (MC, CP) Determine the coordinates of a point that is described geometrically.
5.	475 cc G.6.F (MC, CP) Solve problems involving measurement conversions within and between systems, including those involving derived units, and analyze solutions in terms of reasonableness of solutions and appropriate units.		B G.1.D (MC, SA) Write the converse, inverse, and contra-positive of a valid proposition and determine their validity.
	D G.2.C (MC) Explain and perform basic compass and straightedge constructions related to parallel and perpendicular lines.		61ft G.3.E Solve problems involving the basic trigonometric ratios of sine, cosine, and tangent.
9.	C G.6.F (MC, CP) Solve problems involving measurement conversions within and between systems, including those involving derived units, and analyze solutions in terms of reasonableness of solutions and appropriate units.		A G.3.B Determine and prove triangle congruence, triangle similarity, and other properties of triangles.
11.	C G.2.C (MC) Explain and perform basic compass and straightedge constructions related to parallel and perpendicular lines.		A G.2.B Know, prove, and apply theorems about angles, includin angles that arise from parallel lines intersected by a transversal.
13.	C G.3.E Solve problems involving the basic trigonometric ratios of sine, cosine, and tangent.	14.	D G.3.F Know, prove, and apply basic theorems about parallelograms
15.	D G.3.B Determine and prove triangle congruence, triangle similarity, a	and other p	
16.	C . G.3.F (MC, CP) Know, prove, and apply basic theorems about parallelograms.		Surface Area is 4x bigger (2x2) G.6.D (MC, CP) Predict and verify the effect that changing one, two, or three linear dimensions has on perimeter, area, volume, surface area of two- and three-dimensional figures
18.	A G.2.C (MC) Explain and perform basic compass and straightedge constructions related to parallel and perpendicular lines	19.	(2pt response) BC AD (slopes) AB NOT CD (slopes) G.4.C (MC, SA) Verify and apply properties of triangles and quadrilateral: the coordinate plane.
20.	B G.3.E (MC, CP) Solve problems involving the basic trigonometric ratios of sine, cosine , and tangent.	21.	
22.	B G.4.B (MC, CP) Determine the coordinates of a point that is described		C G.3.D (MC, CP) Know, prove, and apply the Pythagorean Theorem and its

24 D	25. B
G.3.B	G.3.B
Determine and prove triangle congruence, triangle	Determine and prove triangle congruence, triangle
similarity, and other properties of triangles.	similarity, and other properties of triangles.
26. D	27. SAS OR SSS
G.3.F (MC, CP)	G.3.B (MC, SA)
Know, prove, and apply basic theorems about	Determine and prove triangle congruence, triangle
parallelograms.	similarity, and other properties of triangles
28. 3.5 "	29. (<i>2pts</i>)
G.3.C (MC, CP)	(1pt – found left isosceles @66* ea,
Use the properties of special right triangles (30°-60°-90° and 45°-45°-90°) to solve problems.	then subt to find vertex, then calc to find answ
	G.3.B (MC, SA)
	Determine and prove triangle congruence, triangle
	similarity, and other properties of triangles
30C G.6.F (MC, CP) Solve problems involving measurement conversions within and solutions in terms of reasonableness of solutions and appropri	d between sy stems, including those involving derived units, and ana ate units.
31 9.4 miles	32. (2pt response)
G.3.D (MC, CP)	Examples only
Know, prove, and apply the Pythagorean Theorem and its	you might be measuring a section of pipe and
converse.	need it measured to the nearest 1/10 th of a
	centimeter
	The precision of 0.1cm means it will be accura
	within 1/10 cm (1/20 cm either way)
	G.6.E (MC, SA)
	Use different degrees of precision in measurement, explating the reason for using a certain degree of precision, and agestimation strategies to obtain reasonable measurement with appropriate precision for a given purpose.
33. D	34. (2pt)
G.3.C (MC, CP)	IF BOTH the STATEMENT (S1) and its CONVERS
Use the properties of special right triangles (30°-60°-90°	(S1) are NOT true, KELLY is CORRECT (takes bo
and 45°-45°-90°) to solve problems.	• •
	sets of opposite angles
	G.1.C (with process G.7.G) (MC, SA)
	Use deductive reasoning to prove that a valid geometric statement is true.
	Synthesize information to draw conclusions and evaluate
	arguments and conclusions of others.
35. B	36 A
G.3.A (ADD ON)	G.1.D
Know, explain, and apply basic postulates and theorems	Write the converse, inverse, and contra-positive of a vali
about triangles and the special lines, line segments, and rays	proposition and determine their validity.
associated with a triangle.	· · · · · · · · · · · · · · · · · · ·
37 parallelogram	38. A
G.3.F (MC, CP)	G.1.F (MC)
d.5.1 (Mc, CF)	Distinguish between definitions and undefined geometric
Know, prove, and apply basic theorems about	
	terms and explain the role of definitions, undefined term postulates (axioms), and theorems.
Know, prove, and apply basic theorems about	
Know, prove, and apply basic theorems about parallelograms.	
Know, prove, and apply basic theorems about parallelograms. 39 D G.1.F (MC)	

40. **...D**

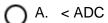
G.1.E (MC)

Identify errors or gaps in a mathematical argument and develop counterexamples to refute invalid statements about geometric relationships.

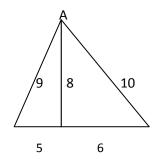

_	Reasoning	6-8 items (6)
1. Determine the converse of the given statement. If the table top is rectangular, then its diagonals are congruent. Which is the converse of this statement?	D, G.1.E, G.1.F 2. Identify the error(s) in refollowing proof.	easoning in the
 A. If a table top is rectangular, then its diagonals are not congruent B. If the diagonals of a table top are congruent, then it is rectangular. C. If a table top is not rectangular, then its diagonals are not congruent. D. If the diagonals of a table top are not congruent, then it is not rectangular. 	A. $\langle ABC \cong \langle PRQ; \overline{BC} \cong \overline{QR} \& \overline{AB} \cong \overline{PQ} \rangle$ B. $\overline{AB} \& \overline{CB}$ form $\langle ABC \rangle = \overline{PQ}$ C. $\overline{RQ} \& \overline{PR}$ form $\langle PRQ \rangle = \overline{PQ}$ C. ΔBC has vertices A, B & C. ΔPQR has vertices P, Q & R. D. $\Delta ABC \cong \Delta PQR$	by Given by Def of Angle by Def of Triangle by SAS
 3. (2pt) Given a quadrilateral with one set of opposite angles congruent, John says the quadrilateral must be a parallelogram. Kelly says that is not true, it does not HAVE to be a parallelogram. John says we need only check this statement and its converse. 51: If a quadrilateral is a parallelogram, then at least one set of its opposite angles are congruent. 52: If at least one set of opposite angles of a quadrilateral are congruent, then it is a parallelogram Check these two statements for truth and decide if John or Kelly is right. 	4. All of the following are correct named and drawn below except: O A. I O B. \overrightarrow{AB} O C \overrightarrow{BC} O D. \overrightarrow{A}	nes for the line
 5. Given the statement: if p then q, which is the inverse: A. If not p, then not q B. if not q, then not p C if q, then p D if p, then not q 	6. Identify an example of term A a point B collinear points C non-collinear points D non-coplanar points	f an undefined

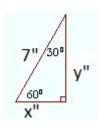
Proving and Applying Properties of 2-Dimensional Figures: G.3.A, G.3.B, G.3.C, G.3.D, G.3.E, G.3.F, G.3.G

21-24 items (21)

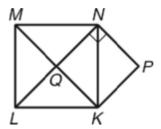

- A parallelogram must be a rectangle if its diagonals:
 - A. bisect each other
 - B. bisect the angles to which they are drawn
 - C. are perpendicular to each other.
 - D. are congruent

8. In parallelogram ABCD, $\overline{DE} \cong \overline{BF}$ Then \triangle EGC \cong \triangle FGA by:

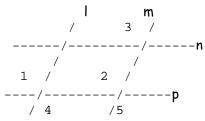



9. Which angle has a cosine of $\frac{3}{5}$?

- B. < CAD
- C. < ABC
- D. < CBA</p>

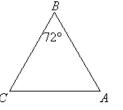


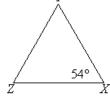
10. Given the triangle below, what is the length of x? (round to nearest 0.1")

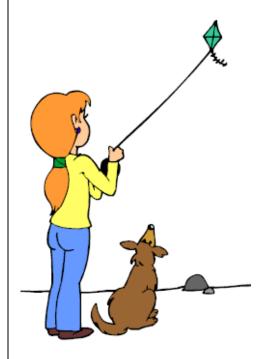


- 11. The angles of a triangle are in the ratio 1:3:5. What is the measure, in degrees, of the largest angle?
- A. 20°
- O B. 30°
- O C. 60°
- O D. 100°

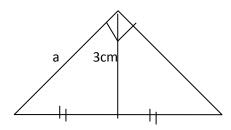
- 12. *KLMN* is a square and $\overline{LN} \perp \overline{NP}$. Which statement can be proved?
- \bigcap $A \triangle KPN \cong \triangle KQN$
- \bigcap B $\overline{PN}||\overline{KM}|$
- \bigcirc C. KQ = PN
- O D. KP = $\frac{1}{2}$ LN




13. Given: $<1 \cong <2$, $<3 \cong <4$ Which statement MAY NOT be true?


- A. line I || line m
- O B <1≅<3
- C. the opposite angles of the quadrilateral formed are two pairs of congruent angles
- D. quadrilateral formed must be a rectangle

- 14. Triangle *ABC* and triangle *XYZ* are congruent isosceles triangles. What is the measure of angle *A*?
- A. 8°
 B. 54°
- O C. 72°
- O D. 180°



15. Maria is flying a kite on the beach. She holds the end of the string 4 feet above ground level and determines the angle of elevation of the kite to be 54°. If the string is 70 feet long, how high is the kite above the ground to the *nearest foot*?

16. Given an isosceles triangle with vertex angle 90°. You drop a line segment from the vertex to the opposite side, to intersect at the midpoint. The segment you drew has a length of 3cm. What is the length of side a?

- O_{A.} $\frac{\sqrt{3}}{2}$
- O B. √3
- O C. 3
- \bigcirc D. $3\sqrt{2}$

17. What is the missing reason?

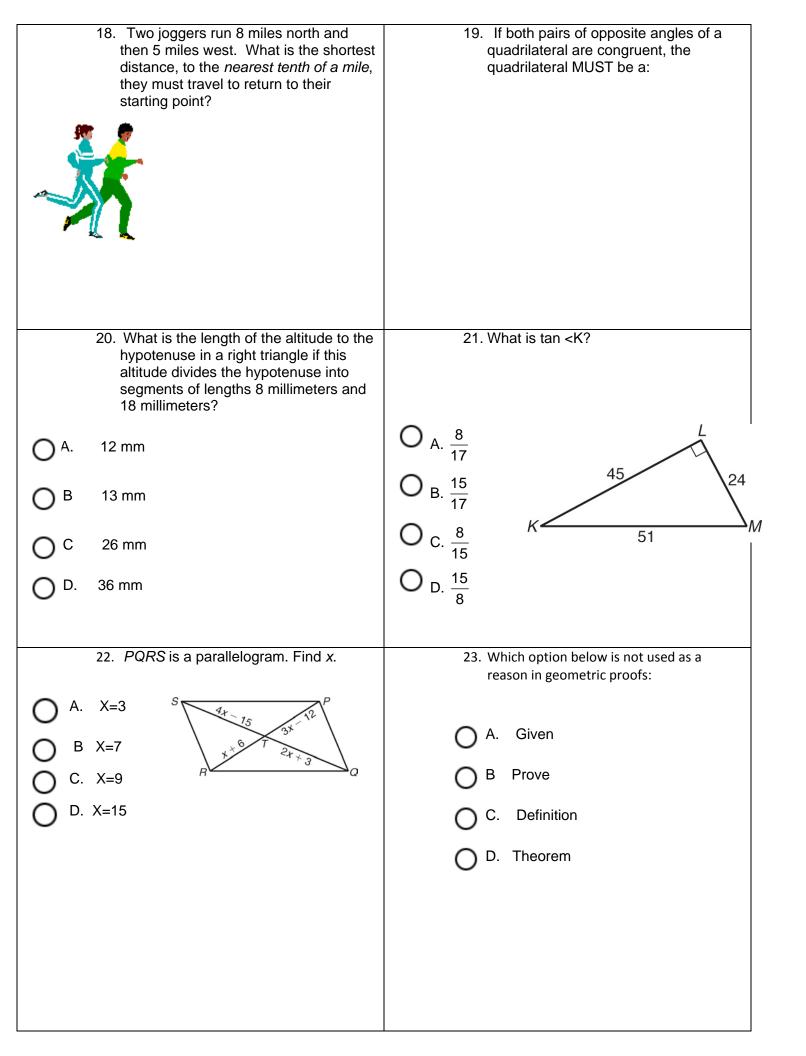
17. ************************************
В
$A \leftarrow \frac{1}{2}C$
D

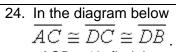
Given:	$\overline{RC} \cong \overline{CD}$	$AND \overline{AC}$	bisects < BCD
Given.	DC - CD	AND AC	Disects < DUD

Prove: △ABC ≅ △ADC

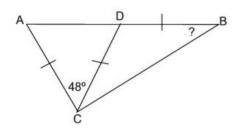
Statement Reason

Statement	Reason		
$\overline{BC} \cong \overline{CD}$	1. Given	O _A .	CPCTC
∠1 ≅ ∠2	2. #17	Ов.	Definition of congruent
$\overline{AC} \cong \overline{AC}$	3. Reflexive Property (a quantity is congruent to itself)	O c.	For two congruent segments, their adjacent angles are congruent.
$\Delta ABC \cong \Delta ADC$	4. (SAS) If two sides and the included angle of one triangle are congruent to	O d.	An angle bisector is a ray whose endpoint is the vertex of the angle and divides the angle into


the corresponding parts of


a second triangle, the

triangles are congruent.


two congruent

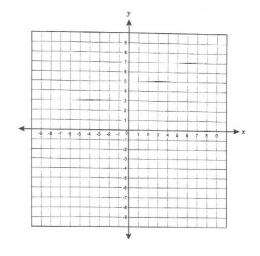
angles.

If the m < ACD = 48, find the m < B.

- 25. Which of the following sets of numbers could represents the lengths of the sides of a right triangle?
- A. {8,10,12}
- B. {25, 31, 40}
- C. {16, 30, 34}
- O. {19, 20, 22}

26. Questions # 26 & #27 below.....

20. Qu	estions # 20 & #27 below
Given $\overline{AC} \cong \overline{EF}$; $\overline{AC} \mid \overline{DB}$; $\overline{EF} \mid \overline{DB}$	AB
Prove: < B ≅ < D	D C E
1)	1) GIVEN
$\overline{AC} \perp \overline{DB}; \overline{EF} \perp \overline{DB}$	
$\overline{AC} \cong \overline{EF}; \angle A \cong \angle E$	
2)	2) Perpendicular lines meet to form right
#26	angles
3)	3) ASA
$\Delta ABC \cong \Delta EDF$	
4) $\angle B \cong \angle D$	4) #27
27.	

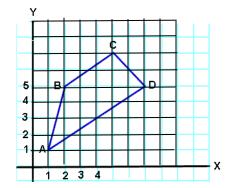

26 Which is the missing statement?

#27 Which is the missing reason?

O	A. < B ≅< D	0	A. Vertices are ≅
0	B. <1 ≅< 2	0	B. CPCTC
O	C. <a &="" <="" angles<="" are="" e="" right="" td=""><th>0</th><td>C. Definition of Congruent</td>	0	C. Definition of Congruent
0	D. < 1 & < 2 are Right Angles	0	D. Perpendicular lines make triangles congruent

G.4.B, G.4.C, G.6.E, G.6.F

28. Three vertices of a square have coordinates (3,1), (4, -4) and (-1, -5). The diagonals of the square intersect at point Q. Determine the coordinates of point Q. You may use the blank grid to help determine the solution.


29. There are 5 horses on 12 acres of land.

1 acre = **43**,560 square feet

What is the mean number of square **yards** per horse?

- A. 8,712 square yards
- B. 11,616 square yards
- C. 34,848 square yards
- D. 104,544 square yards

30. (2 pt response)
Given: A(1,1), B(2, 5), C(5, 7), D(7, 5)
Prove ABCD is a trapezoid.

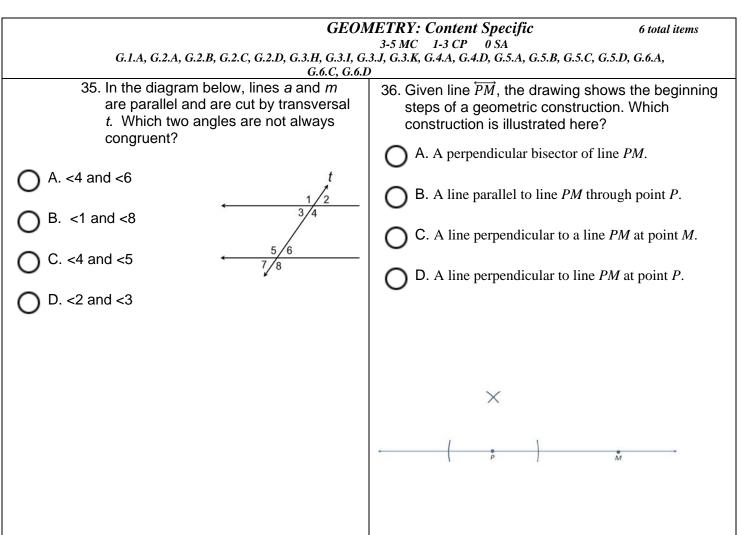
31. The coordinates of the vertices of parallelogram

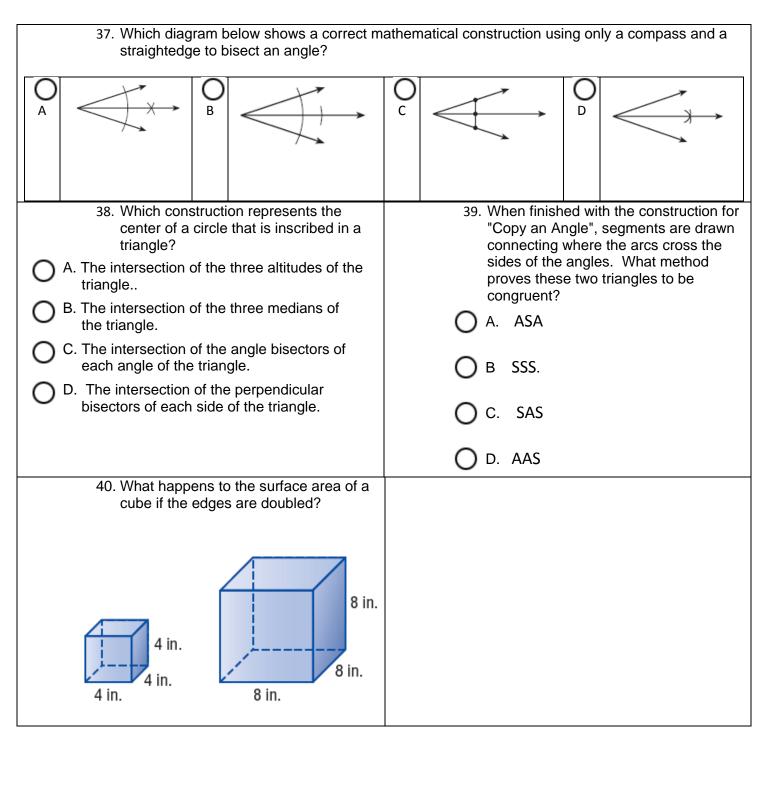
ABCD are A(-3,2), B(-2,-1), C(4,1), and D(3,4). The slopes of which line segments could be calculated to show that ABCD is a rectangle?

- \bigcap A. \overline{AB} and \overline{DC}
- \bigcirc B. \overline{AB} and \overline{BC}
- \bigcap C. \overline{AD} and \overline{BC}
- \bigcap D. \overline{AC} and \overline{BD}

32. (2pt response)

"If a measurement made with a metric ruler is 5.6 cm and the ruler has a precision of 0.1 cm, then the measurement is 5.6 \pm 0.05 cm, or from 5.55 cm to 5.65 cm. Any measurements within this range are 'tolerated' or perceived as correct."


Explain why you might use this degree of precision in measuring, and what is meant by the ruler having "a precision of 0.1cm".


33. Martina has a calculator box that has a volume of 29 cubic inches.

1 inch = 2.54 centimeters

Determine the volume of the calculator box to the nearest cubic centimeter.

<u> </u>	A. about 2 sq units
9 8 9 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9	B about 2.5 sq units
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	C about 3.5 sq units
4 8 -7 6 5 4 5 2 1 0 1 2 3 4 5 6 7 8 0 ×x	D about 12 sq units

ANSWER KEY

_	c & Reasoning 6-8 itmes (
5-8M	
	G.1.D(MC, SA) G.1.E (MC), G.1.F
1B G.1.D (MC, SA) Write the converse, inverse, and contra-positive of a valid proposition and determine their validity.	 D G.1.E (MC) Identify errors or gaps in a mathematical argument and develop counterexamples to refute invalid statements aborgeometric relationships.
3. (2pt) SINCE BOTH the STATEMENT are NOT true, Kenis correct G.1.C (with process G.7.G) (MC, SA) Use deductive reasoning to prove that a valid geometric statement is true. Synthesize information to draw conclusions and evaluate arguments and conclusions of others.	Distinguish between definitions and undefined geometric terms and explain the role of definitions, undefined terms postulates (axioms), and theorems.
5A G.1.D Write the converse, inverse, and contra-positive of a valid proposition and determine their validity.	6A G.1.F (MC) Distinguish between definitions and undefined geometric terms and explain the role of definitions, undefined terms postulates (axioms), and theorems.
15-19N	es of 2-Dimensional Figures: 21-24 items MC, 2-4 CP, 1-3 SA .3.D (MC, CP), G.3.E (MC, CP), G.3.F (MC, CP), G.3.G (MC, CP)
7D G.3.F (MC, CP) Know, prove, and apply basic theorems about parallelogr.	8. G.3.B (MC, SA) Determine and prove triangle congruence, triangle similar and other properties of triangles.
9A G.3.E (MC, CP) Solve problems involving the basic trigonometric ratios of	
sine, cosine , and tangent.	45°–45°–90°) to solve problems.
sine, cosine, and tangent. 11D G.3.A (MC, SA) Know, explain, and apply basic postulates and theorems about triangles and the special lines, line segments, and r associated with a triangle.	12. G.3.G (MC, CP) Know, prove, and apply theorems about properties of
11D G.3.A (MC, SA) Know, explain, and apply basic postulates and theorems about triangles and the special lines, line segments, and r	12. G.3.G (MC, CP) Know, prove, and apply theorems about properties of quadrilaterals and other polygons. 14B G.3.A (MC, SA) Know, explain, and apply basic postulates and theorems
 11D G.3.A (MC, SA) Know, explain, and apply basic postulates and theorems about triangles and the special lines, line segments, and r associated with a triangle. 13D G.3.F 	12. G.3.G (MC, CP) Know, prove, and apply theorems about properties of quadrilaterals and other polygons. 14B G.3.A (MC, SA) Know, explain, and apply basic postulates and theorems about triangles and the special lines, line segments, and raassociated with a triangle 16D G.3.C (MC, CP)

G.1.A, G.2.A, G.2.B, G.2.C, G.2.D, G.3.H, G.3.I, G.3.J, G.3.K, G.4.A, G.4.D, G.5.A, G.5.B, G.5.C, G.5.D, G.6.A, G.6.C, G.6.D

35. **..A** 36. ...D G.2.B (MC, CP) G.2.C (MC) Explain and perform basic compass and straightedge Know, prove, and apply theorems about angles, including angles that arise from parallel lines intersected by a constructions related to parallel and perpendicular lines. transversal. 37. .A G.2.C (MC) Explain and perform basic compass and straightedge constructions related to parallel and perpendicular lines. 38.**C** 39. ...C G.3.I (MC) G.2.C (MC) Explain and perform constructions related to the circle. Explain and perform basic compass and straightedge constructions related to parallel and perpendicular lines.

40.surface area is 4x bigger (2x2)

G.6.D (MC, CP)

Predict and verify the effect that changing one, two, or three linear dimensions has on perimeter, area, volume, or surface area of two- and three-dimensional figures